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Abstract. A Representative Volume Element based multilevel (multigrid) solution method for wave propagation
problems in periodic heterogeneous media is developed. The intergrid transfer operators are constructed from the
solution of the Representative Volume Element (RVE) problem. It is shown that the convergence of the RVE-
based multilevel method improves with increasing material heterogeneity and decreasing time integration step.
Numerical results confirm theoretical estimates.
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1. Introduction

We focus on the class of problems for which the size of the microstructure is comparable in
magnitude to that of structural details or the wavelength of a traveling signal. This class of
problems falls into the grey area where the distinction between the structure and the material
is not obvious at best. A number of important problems fall into this category including:
(i) 3D woven architectures in aircraft engines [1, 2], (ii) airframes, (iii) tires [3, 4], (iv) micro-
electronic devices [5, pp. 17–19], and (v) porous engineering materials such as honeycombs
and truss-like materials [6]. Figure 1 depicts a typical 3D material architecture [7, 8]. The size
of the Representative Volume Element (RVE) in woven composites ranges from one quarter of
an inch to more than an inch. These large 3D material architectures are often used in structural
components where the structural details such as holes, cutouts and other interconnecting parts
are of the same order of magnitude as that of the RVE. Three examples of such a profound
scale mixing are shown in Figure 2.

Tires represent another example where material and structural scales are inseparable. A sin-
gle tire today contains more than 200 raw materials. It features a complex architecture of steel
belts, textile plies and tread patterns, designed to produce optimal performance characteristics
for each type of tire. Tires are made from rubber and cord/rubber 3D composite components
as shown in Figure 3a. The tread and sidewall are all rubber, while the belts and plies are
unidirectional lamina with continuous cords of polyester, rayon, or nylon fibers, or twisted
steel wires. When the relatively stiff wires have cut ends surrounded by rubber, this creates a
stress riser for the rubber and a natural location for damage, flaw initiation and growth [3, 4].
Cord diameters could be up to 2 mm, which is of the same order of magnitude as the steel belt
thickness.

Coupling of scales is even more profound in Multichip Modules (MCM) which are char-
acterized by a number of layers containing wires and vias in various configurations, in con-
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Figure 1. A typical 3D material architecture

Figure 2. Structural Components made of 3D woven composites

junction with a general chip and cooling structure layout [5, pp. 53–56]. A typical multichip
module is shown in Figure 3b. It can be seen that in MCM vias are of the same size as the
structural details (single chip).

Finally, Figure 4 depicts an example of a Lattice Block Material developed by JAMCORP
corporation [6]. It can be seen that the size of the RVE is approximately 12 inches resulting
in strong scale coupling between the scales. Lattice Block Materials (LBM) are a family of
structural materials that derive their mechanical performance from their structure of highly
ordered internal tetrahedra. LBM may be manufactured in steel, aluminum, plastics, rubber or
ceramics. LBM technology provides a nearly optimal strength-to-weight ratio.

Various multiscale solution approaches in the modern era can be classified into two cate-
gories: (a) multiple-scale expansion methods [15–21], and (b) global-local methods [22–32].
In what follows we briefly review the two approaches and their applicability to problems with
strong scale mixing.

Multiple-scale expansion methods have been employed by Ghosh [15, 16], Herakovich
[17], Kikuchi [18, 19], Fish [13, 20, 21] and others. These methods hinge on the following
three assumptions: (i) the macrostructure is formed by a spatial repetition of RVEs, (ii) solu-
tion is locally periodic, and (iii) macroscopic fields are constant within a single RVE. Typically
these assumptions are valid away from the boundary-layer regions and as long as the mi-
crostructure is significantly smaller than a typical dimension of the macrostructure or the
wavelength of a traveling signal.

The hallmark of global-local techniques [22–32], is the ability to capitalize on the exis-
tence of relatively small region(s) within the problem domain requiring a refined mathemati-
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Figure 3. (a) Tire Structure, (b) Single chip

Figure 4. Lattice Block Material

cal/numerical modeling. Such approaches may not be adequate for problems with numerous
interacting local effects which may dynamically evolve (transient problems).

In this paper we focus on problems with strong scale mixing for which existing methods are
either inaccurate (multiple-scale-expansion methods) or computationally intractable (global-
local methods). For this class of problems we propose to utilize a multilevel approach with
special intergrid transfer operators constructed from the solution of the RVE problem. We
will refer to such a method as the RVE-based multilevel method. For differential equations
with oscillatory coefficients the classical multigrid approach with standard linear interpolation
operators is not well suited to approximate the lower frequency response, mainly because the
lower frequency eigenvectors are not smooth for problems in heterogeneous media. In statics,
it has been shown [33, 34] that the solution based on the homogenization theory represents
exactly the lower frequency response of the source problem resulting in a rate of convergence
of the two-level method governed by

‖ei+1‖2 = γ ‖ei‖2, γ = (1 + d + 1/d)−1, (1)

provided that the middle frequency of the error can be filtered out. In Equation (1) ei = ui−uex

where ui, uex reprensent the solution at iteration i and the exact solution, respectively, and d is
the ratio of microconstituents stiffness. Note that for homogeneous media, d = 1, discretized
with a uniform finite element mesh the classical multigrid estimate, stating that asymptotically
the error reduces by a factor of three with each cycle, is recovered. On the other hand, if one
micro-phase is significantly stiffer than the other, i.e., d � 1 or d � 1, the two-level method
converges in a single cycle.
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Figure 5. Cracking in Blackglass matrix Figure 6. Model problem definition

Tires, multichip modules (MCMs) and woven ceramic composites fall into the category
of problems for which d � 1 or d � 1. Cord-rubber stiffness ratio is about 1000/1 in the
axial direction [3]; bundle-matrix stiffness ratio in high temperature woven composites is over
100/1 due to excessive cracking in the matrix domain resulting from material processing [1]
(Figure 5); copper-polyimide stiffness ratio is about 50/1 in MCMs, while thermal conductiv-
ity ratio is over 1000/1 [5, pp. 38–42]. The two-level method [33, 34] is ideally suited for this
type of problems.

The primary objective of the present manuscript is to extend the methodology developed
in [33, 34] to transient problems. We show that for transient problems the homogenized model
does not capture the lower frequency response of the source problem. A nearly optimal pro-
longation operator can be constructed from the solution of the equivalent static problem on
the RVE domain. The mid-frequency errors, which are often unaffected by the smoother and
coarse model correction [33], can be filtered out using a three-level approach based on the
global-basis multilevel method [35, 36].

We focus on a special class of multilevel methods for a symmetric positive definite system
of equations

Ku = f u ∈ R
n,f ∈ R

n,K ∈ R
n×n (2)

arising from the discretization in space and time of the initial-boundary-value problem de-
scribing the wave propagation in heterogeneous media. The following notation is employed
throughout the paper. We define the prolongation operator, Q, as Q : Rm → Rn. The
restriction operator, QT , from the fine to coarse model is the transpose of the prolongation
operator QT : Rn → Rm. The coarse model matrix K0 is the restriction of K:

K0 = QT KQ K0 ∈ Rm×m. (3)

The smoothing preconditioner and coarse model preconditioner are denoted as P ∈ Rn×n

and C = (QK−1
0 QT )−1 ∈ Rn×n, respectively. The smoothing and coarse model correction

iteration matrices are denoted as S = I − P −1K ∈ Rn×n and T = I − C−1K ∈ Rn×n,
respectively, where I is the n × n identity matrix. The error reduction, ei+1 = Lei , in a
complete two-level cycle is governed by a two-level iteration matrix

L = SνT Sν ∈ Rn×n (4)
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with ν post- and pre-smoothing iterations. For more details we refer to [37–41].
Except for a small fraction of mid-frequency eigenmodes, most of the eigenvalues of the

stiffness matrix (2) are clustered at the two ends of the spectrum [33, 34]. While low and high
frequency modes of error can be efficiently captured by the coarse model and smoother, re-
spectively, the mid-range frequencies can be eliminated using global-basis multilevel method
[35, 36]. By this approach the mid-range frequencies of error are filtered out by introducing
an additional coarse level with a prolongation operator, q : Rk → Rn, spanning the subspace
defined by a linear combination of k eigenvectors corresponding to the largest eigenvalues of
L. The resulting three level iteration matrix, L̂, is given as

L̂ = L[I − q(qT Kq)−1qT K]L ∈ Rn×n. (5)

2. Convergence analysis for 1D model problem

For convergence studies we consider the following elastodynamics model problem with some
initial and Dirichlet boundary conditions

ρ(x/ε)ü − [E(x/ε)u,x ],x = 0, u(x, 0) = F(x), u̇(x, 0) = 0

u(0, t) = 0, u(l, t) = 0
(6)

where u(x, t) denotes the displacement field; ρ(x/ε) and E(x/ε) are the mass density and
elastic modulus of the medium, respectively; 0 < ε � 1 is a small parameter denoting rapid
spatial variation of material properties. The problem domain �(0, l) consists of a heteroge-
neous medium formed by a spatial repetition of the RVE composed of two materials phases as
shown in Figure 6. Each RVE is discretized with two elements, one element for each material
phase.

It has been shown that in statics [33, 34], the optimal coarse model can be constructed from
the boundary-value problem with constant (averaged) material properties given by

E0 = E1E2

αE1 + (1 − α)E2
, ρ0 = (1 − α)ρ1 + αρ2, (7)

where E1, E2, ρ1 and ρ2 are the elastic moduli and mass density of the two constituent material
phases, respectively; α is the volume fraction of the RVE constituent denoted by subscript 2.
For dynamics, however, this approach has been found to be inefficient, in particular when the
equivalent stiffness matrix resulting from the Newmark integration scheme is dominated by
the mass matrix (see Equation (8)). Construction of a nearly optimal coarse model for dynam-
ics and analysis of the resulting two-level iterative process are the subjects of Sections 2.1 and
2.2.

2.1. CONVERGENCE OF THE RVE BASED TWO-LEVEL METHOD

We consider a coarse grid whose nodes coincide with the RVE boundaries as shown in Fig-
ure 6. The number of nodes in the coarse grid is m; the number of RVEs is m − 1 and the
number of nodes in the source grid is n = 2m − 1. The coarse and the source grid displace-
ments are denoted by û and u, respectively. In the source grid, nodal displacements at the
RVE boundaries are denoted by ui, i = 1, 2, . . . , m; nodal displacements inside the RVE are
denoted by ui,(i+1), i = 1, 2, . . . , m − 1.
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2.1.1. The RVE based two-level prolongation operator
For the two-element RVE the equivalent stiffness matrix is given as

Ka = Ka + 1

β�t2
Ma =




a + cm1/m0 −a 0

−a a + b + c −b

0 −b b + cm2/m0


 , (8)

where β is the parameter in the Newmark scheme and �t is the time step size; Ka and Ma are
the assembled RVE stiffness and lumped mass matrices; m1 = (1−α)hρ1A and m2 = αhρ2A

are the masses of the two constituent phases and m0 = m1 + m2 = ρ0hA is the total mass of
the RVE; A and h are the cross-sectional area and the length of the RVE, respectively; and

a = K1

(1 − α)h
, b = K2

αh
, c = m0

2β�t2
, K1 = E1A, K2 = E2A. (9)

The construction of the prolongation operator is based on the minimization of the RVE
strain energy

	a = 1

2
uT Kau, (10)

subjected to the displacement compatibility condition between the adjacent RVEs:


1 0

θ δ

0 1




[
ûi

ûi+1

]
=




ui

ui,(i+1)

ui+1


 , i = 1, 2, . . . , m − 1, (11)

where u = [
uiui,(i+1)ui+1

]T
. The solution of the constrained minimization problem yields

θ = a

a + b + c
, δ = b

a + b + c
. (12)

For the static case, c = 0, with homogeneous material properties and the volume fraction
α = 0·5, the interpolation parameters in (12) reduce to θ = δ = 0·5, which corresponds to
the classical linear interpolants.

The global prolongation operator Q is formed by assembling the prolongation matrices of
RVEs

Q =




1

θ δ

1

θ δ

. . . . . . . . . . . .

θ δ

1




n×m

. (13)

Using lumped mass matrix formulation, the global equivalent stiffness matrix of the source
grid has a tridiagonal form
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K =




a + b + c −b

−b a + b + c −a

−a a + b + c −b

. . . . . . . . . . . . . . .

−a a + b + c −b

−b a + b + c




(n−2)×(n−2)

. (14)

The coarse model equivalent stiffness matrix, obtained by the restriction of the source grid
matrix, K0 = QT KQ, is also a tridiagonal matrix

K0 = g tridiag{−1, 2,−1} + f I , (15)

where

g = δa + θb − δθ(a + b + c), f = (a + b)(θ + δ − 1)2 + c[(θ + δ)2 + 1]. (16)

2.1.2. Eigenpairs of the equivalent stiffness matrices
We first relate the eigenpairs of the source grid equivalent stiffness K to those of the coarse
model equivalent stiffness matrix K0. We note that if φ̂ is an eigenvector of K01 = g tridiag
{−1, 2,−1}, it is also an eigenvector of K0, i.e.,

K01φ̂ = λ̂1φ̂, K0φ̂ = λ̂φ̂ (17)

and the eigenvalues are related by

λ̂ = λ̂1 + f. (18)

The eigenvectors of K01 are (cf. Hackbusch [38, pp. 65–67])

φ̂k
i = sin

(i − 1)kπ

m − 1
, 1 ≤ i ≤ m, 1 ≤ k ≤ m − 2, (19)

where the superscript represents the eigenvector number and the subscript denotes the com-
ponents of a specific eigenvector.

The first equation in (17) can be written as

g(−φ̂k
i−1 + 2φ̂k

i − φ̂k
i+1) = λ̂k

1φ̂
k
i , 2 ≤ i ≤ m − 1. (20)

Substituting the eigenvectors in (19) in (20) yields

λ̂k
1 = 4g

[
sin

kπ

2(m − 1)

]2

, λ̂k = 4g

[
sin

kπ

2(m − 1)

]2

+ f, 1 ≤ k ≤ m − 2. (21)

The eigenvalue problem of the source grid is

Kφp = λpφp, 1 ≤ p ≤ n − 2, (22)

which in view of Equation (14) can be written as,



94 J. Fish and W. Chen

−aφ
p

i + (a + b + c)φ
p

i,(i+1) − bφ
p

i+1 = λpφ
p

i,(i+1), 1 ≤ i ≤ m − 1,

−bφ
p

(i−1),i + (a + b + c)φ
p

i − aφ
p

i,(i+1) = λpφ
p

i , 2 ≤ i ≤ m − 1,

φ
p

1 = 0, φ
p
m = 0, 1 ≤ p ≤ n − 2.

(23)

We denote the prolongation of the eigenvector φ̂k into the interior node of the RVE as
φ̂k

i,(i+1) and it is prolongated in accordance with the prolongation matrix of the RVE (11), i.e.,

φ̂k
i,(i+1) = θφ̂k

i + δφ̂k
i+1. (24)

We first solve for the m−2 smallest eigenpairs (λk, φk), where 1 ≤ k ≤ m−2. We assume
that the eigenvectors on the source grid are related to the eigenvectors on the coarse model by

φk
i = φ̂k

i , 1 ≤ i ≤ m,

φk
i,(i+1) = wkφ̂k

i,(i+1), 1 ≤ i ≤ m − 1, 1 ≤ k ≤ m − 2, (25)

where wk are parameters to be determined. Substituting (25) in (23) yields

(a + b + c)wkφ̂k
i,(i+1) − aφ̂k

i − bφ̂k
i+1 = λkwkφ̂k

i,(i+1), 1 ≤ i ≤ m − 1,

(a + b + c)φ̂k
i − awkφ̂k

i,(i+1) − bwkφ̂k
(i−1),i = λkφ̂k

i , 2 ≤ i ≤ m − 1,

φ̂k
1 = 0, φ̂k

m = 0, 1 ≤ k ≤ m − 2. (26)

Inserting Equations (12) and (24) into (26) and using the relation (20) for the eigenpairs of
the coarse model, we have

(wk − 1)φ̂k
i,(i+1) = wkλk

s
φ̂k

i,(i+1), 1 ≤ i ≤ m − 1,

{
s +

[
ab

s

(
λ̂k

1

g
− 2

)
− a2 + b2

s

]
wk

}
φ̂k

i = λkφ̂k
i , 1 ≤ i ≤ m,

φ̂k
1 = 0, φ̂k

m = 0, 1 ≤ k ≤ m − 2, (27)

where s = a + b + c. Equation (27) must be satisfied for any eigenvector φk. Therefore, it
follows that

wk − 1 = wkλk

s
, s +

[
ab

s

(
λ̂k

1

g
− 2

)
− a2 + b2

s

)
wk = λk, 1 ≤ k ≤ m − 2. (28)

Solving Equation (28) yields

wk = ± s

a + b

1√
1 − q

[
sin

kπ

2(m − 1)

]2
,

λk = (a + b)


1 −

√
1 − q

[
sin

kπ

2(m − 1)

]2

 + c, 1 ≤ k ≤ m − 2, (29)
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where

q = 4ab

(a + b)2
= 4d1d2

(d1 + d2)2
, 0 < q ≤ 1, d1 = αK1, d2 = (1 − α)K2. (30)

Next, we solve for the m − 2 largest eigenpairs (λr−k, φr−k), where r = 2(m − 1), 1 ≤
k ≤ m − 2. Assuming that the eigenvectors of the source grid are related to the eigenvectors
of the coarse model by

φr−k
i = −φ̂k

i , 1 ≤ i ≤ m,

φr−k
i,(i+1) = νkφ̂k

i,(i+1), 1 ≤ i ≤ m − 1, 1 ≤ k ≤ m − 2, (31)

we have

νk = wk, λr−k = (a + b)


1 +

√
1 − q

[
sin

kπ

2(m − 1)

]2

 + c, 1 ≤ k ≤ m − 2. (32)

The middle eigenpair (λm−1, φm−1) follows directly from the eigenvalue problem (23) and
the symmetry condition

λm−1 = a + b + c = s, φm−1
i = 0, 1 ≤ i ≤ m,

φm−1
i,(i+1) = −b

a
φm−1

(i−1),i = −d2

d1
φm−1

(i−1),i, 2 ≤ i ≤ m − 1. (33)

2.1.3. Evaluation of the spectral radius of the two-level iteration matrix
Applying the coarse-model correction iteration matrix T to the eigenvectors of the equivalent
stiffness matrix of the source grid, we obtain

T φp = (I − QK
−1
0 QT K)φp, 1 ≤ p ≤ n − 2, (34)

where

Kφk = λkφk, Kφr−k = λr−kφr−k, r = 2(m − 1),

Kφm−1 = λm−1φm−1, 1 ≤ k ≤ m − 2. (35)

Based on the prolongation operator (13) and the relationship between the eigenvectors in
the source and coarse grids (25) and (31) as well as the source-grid eigenvalue problem (26),
the restriction of the eigenvectors is given by

[QT φk]i = λr−k

s
φ̂k

i , [QT φr−k]i = −λk

s
φ̂k

i , r = 2(m − 1), 1 ≤ k ≤ m − 2,

[QT φm−1]i = 0, 1 ≤ i ≤ m. (36)

Combining Equations (35) and (36), and using (17) for the eigenpairs in the coarse grid,
we have
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QT Kφk = λkλr−k

s
φ̂k, QT Kφr−k = −λkλr−k

s
φ̂k, QT Kφm−1 = 0, (37)

K
−1
0 QT Kφk = λkλr−k

sλ̂k
φ̂k, K

−1
0 QT Kφr−k = −λkλr−k

sλ̂k
φ̂k, K

−1
0 QT Kφm−1 = 0. (38)

The prolongation of the eigenvectors in the coarse grid based on the operator (13) can be
written as

[Qφ̂k]i,(i+1) = θφ̂k
i + δφ̂k

i+1 = φ̂k
i,(i+1) = 1

wk
φk

i,(i+1) = 1

wk
φr−k

i,(i+1), 1 ≤ i ≤ m − 1,

[Qφ̂k]i = φ̂k
i = φk

i = −φr−k
i , 1 ≤ i ≤ m, 1 ≤ k ≤ m − 2. (39)

Combination of Equations (34), (38) and (39) yields

[T φk]i,(i+1) =
[

1 − λkλr−k

wkλ̂ks

]
φk

i(i+1), [T φk]i =
[

1 − λkλr−k

λ̂ks

]
φk

i , (40)

[T φr−k]i,(i+1) =
[

1 + λkλr−k

wkλ̂ks

]
φr−k

i(i+1), [T φr−k]i =
[

1 − λkλr−k

λ̂ks

]
φr−k

i , (41)

T φm−1 = φm−1. (42)

Since

φk
i(i+1) = φr−k

i(i+1), φk
i = −φr−k

i , (43)

we can express T φk as

T φk = k1φ
k + k2φ

r−k, (44)

where k1 and k2 follow from Equations (40), (43) and (44):

k1 + k2 = 1 − λkλr−k

wkλ̂ks
, k1 − k2 = 1 − λkλr−k

λ̂ks
. (45)

Solving Equation (45) yields

k1 = 1 − wk + 1

2wk

λkλr−k

λ̂ks
, k2 = wk − 1

2wk

λkλr−k

λ̂ks
. (46)

Likewise, we can express T φr−k as

T φr−k = k3φ
k + k4φ

r−k, (47)

where k3 and k4 follow from Equations (41), (43) and (47):

k3 = wk + 1

2wk

λkλr−k

λ̂ks
, k4 = 1 − wk − 1

2wk

λkλr−k

λ̂ks
. (48)

Substituting Equations (46) and (48) in (44) and (47) yields

T φk = (1 − a1)φ
k + a2φ

r−k, T φr−k = a1φ
k + (1 − a2)φ

r−k, 1 ≤ k ≤ m − 2, (49)
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where

a1 = wk + 1

2wk

λkλr−k

λ̂ks
, a2 = wk − 1

2wk

λkλr−k

λ̂ks
. (50)

For simplicity, we consider a two-level cycle with one weighted Jacobi post-smoothing
iteration and coarse-level correction. The iteration matrix of the two-level cycle becomes

L = ST , (51)

where

S = I − ω

s
K, s = a + b + c, (52)

with ω being the weighting factor of the Jacobi method.
Let the eigenpairs of this two-level iteration matrix L be (�k, γ k), (�r−k, γ r−k) and

(�m−1, γ m−1), where r = 2(m − 1) and 1 ≤ k ≤ m − 2, then we have

L�k = γ k�k, L�r−k = γ r−k�r−k, L�m−1 = γ m−1�m−1 (53)

From Equations (42), (52) and (33) it follows that

Lφm−1 = ST φm−1 = Sφm−1 =
(

1 − ω

s
λm−1

)
φm−1 = (1 − ω)φm−1. (54)

Therefore, we have

�m−1 = φm−1, γ m−1 = 1 − ω. (55)

Let �k be expressed as a linear combination of φk and φr−k, i.e.,

�k = f1φ
k + f2φ

r−k. (56)

Then, by exploiting the relations

Sφk =
(

1 − ω

s
λk

)
φk, Sφr−k =

(
1 − ω

s
λr−k

)
φr−k (57)

and using Equaiton (49), we have

L�k =
{
[f1(1 − a1) + f2a1]

(
1 − ω

s
λk

)}
φk +

{
[f1a2 + f2(1 − a2)]

(
1 − ω

s
λr−k

)}
φr−k

= γ k(f1φ
k + f2φ

r−k),

from which it follows that

[f1(1 − a1) + f2a1]
(

1 − ω

s
λk

)
= f1γ

k, [f1a2 + f2(1 − a2)]
(

1 − ω

s
λr−k

)
= f2γ

k (58)

From the first of the above equations, it follows

γ k =
[
(1 − a1) + f2

f1
a1

] (
1 − ω

s
λk

)
. (59)

Let

f1 = a1

(
1 − ω

s
λk

)
; (60)



98 J. Fish and W. Chen

then, we have

γ k = (1 − a1)
(

1 − ω

s
λk

)
+ f2. (61)

The equation for f2 is obtained by eliminating γ k from the second equation in (58) and
Equation (59), and inserting (60) into the resulting equation, which yields

f 2
2 +

{
(1−a1)

(
1−ω

s
λk

)
−(1−a2)

(
1−ω

s
λr−k

)}
f2−a1a2

(
1−ω

s
λk

) (
1−ω

s
λr−k

)
=0. (62)

The solution of the above quadratic equation is given by

(f2)1,2 = 2K̃(1 − 2ω)
√

1 − qχ

4K̃ + hqc
± 16K̃2(1 − 2ω + ωqχ) + hqc(1 − ω)(8K̃ + hqc)

2(4K̃ + hqc)2
, (63)

where

K̃ = E0A, χ =
[

sin
kπ

2(m − 1)

]2

, 1 ≤ k ≤ m − 2. (64)

Likewise, let �r−k be expressed as a linear combination of φk and φr−k, i.e.,

�r−k = f3φ
k + f4φ

r−k, (65)

where f3 and f4 are coefficients which can be determined using similar procedures as de-
scribed before. Finally, we have

γ k = (1 − a1)
(

1 − ω

s
λk

)
+ (f2)1, γ r−k = (1 − a1)

(
1 − ω

s
λk

)
+ (f2)2. (66)

Inserting Equation (63) into (66) and accounting for (55) gives the spectrum of the eigen-
values of the two-level iteration matrix

γ k = 16K̃2(1 − 2ω + ωqχ) + hqc(1 − ω)(8K̃ + hqc)

(4K̃ + hqc)2
,

γ r−k = 0, γ m−1 = 1 − ω, r = 2(m − 1), 1 ≤ k ≤ m − 2. (67)

The spectral radius of the two-level iteration matrix ρ(L) is defined as the largest absolute
value of the eigenvalues of L:

ρ(L) = max{|γ k|, 1 − ω}. (68)

Since 0 ≤ χ ≤ 1, the weighting factor for the Jacobi method is chosen to provide the same
rate of convergence for the two extreme values:

|γ k|(χ=0) = |γ k|(χ=1). (69)

Inserting the first expression in (67) into (69) we have

ω = 16K̃2 + hqc(8K̃ + hqc)

(32 − 8q)K̃2 + hqc(8K̃ + hqc)
. (70)

It can be seen that 0 < ω < 1 since 0 < q ≤ 1 and both the numerator and the denominator
of (70) are positive with the denominator greater than the numerator.

Substitution of (70) in the first expression of (67) yields
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Figure 7. The rate of convergence of the two-level
method

Figure 8. Aggregation model in 1D

max(|γ k|) = q

4 − q + 2κ(2 + κ)
, κ = c

a + b
, (71)

where the following relations have been exploited

q = 4ab

(a + b)2
,

K̃

h
= ab

a + b
,

K̃

hqc
= a + b

4c
. (72)

For the case of α = 0·5 and ρ1 = ρ2, Equation (71) can be written in the form

max(|γ k|) = 1

1 + d + 1

d
+ 4ζ 2[d(1 + 2ζ 2) + 1]

, (73)

where d ≥ 1 is the ratio of micro-constituent elastic moduli and ζ is the ratio between the
critical time step (i.e., the time for a wave to propagate through a single element) and the time
step size employed for implicit time integration

1 ≤ d = E1/E2, ξ = �tcr/�t. (74)

Remark 1: d and ζ in (73) are two non-dimensional parameters which characterize the degree
of material heterogeneity and system dynamics, respectively. ξ = 0 corresponds to the static
case, in which case we recover the rate of convergence, (1 + d + 1/d)−1, previously obtained
by the first author [33]. For ξ = 0 and a homogeneous medium, d = 1, with the volume
fraction α = 0·5, Equation (71) gives ρ∗ = 1/3, which corresponds to the classical multigrid
method.
Remark 2: The mid-frequency eigenvector corresponding to the eigenvalue (1 − ω) is φm−1

(see Equation (33)). This mid-frequency mode of error can be filtered out using global basis
method [35, 36] as described by Equation (2) and the resulting rate of convergence is then
governed by (71) and (73).

The plot of spectral radius of the two-level iteration matrix (73) is given in Figure 7.
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2.2. CONVERGENCE OF THE RVE BASED AGGREGATION METHOD

Enforcing compatibility between adjacent RVEs is trivial for one-dimensional problems only.
In multi-dimensions, however, it is more convenient to employ an aggregation approach,
which does not require compatibility between adjacent aggregates or RVEs in the present
context [9–12]. Instead, an interface of one layer of ‘soft’ elements is formed between the
aggregates. The rate of convergence of the aggregation method is governed by the spectral
radius of the interface elements stiffness matrix and the cut-off eigenvalue below which all the
aggregate modes are included in the coarse model.

For the model problem under consideration it is convenient to define a three-element RVE
as shown in Figure 8. Between two adjacent RVEs there is a ‘soft’ interface element (E2 ≤
E1). As before, we denote the number of nodes in the coarse grid by m. The number of
nodes in the source grid is n = 2m. In the source grid, the nodal displacements at the RVE
boundaries are denoted by ui and the nodal displacements inside the RVE are denoted as
u

(1)

i,(i+1) and u
(2)

i,(i+1). We seek to estimate numerically the rate of convergence of the RVE based
aggregation method. For simplicity, attention is restricted to the case of constant mass density,
ρ1 = ρ2, and the volume fraction α = 0·5.

2.2.1. The prolongation operator
The equivalent stiffness matrix for the three-element aggregate is given by

Ka =




a + c/2 −a 0 0

−a a + b + c −b 0

0 −b a + b + c −a

−a a + c/2


 . (75)

The prolongation operator for a single aggregate is constructed based on the constrained
minimization problem:

	a = 1

2
φT Kaφ, subjected to ‖φ‖2 = 1, (76)

where

φ =
[
uiu

(1)

i,(i+1)u
(2)

i,(i+1)ui+1

]T

, (77)

which yields the following eigenvalue problem:

Kaφ = λaφ, ‖φ‖2 = 1. (78)

The prolongation matrix of the aggregate takes the following form:

[
q1 q2

] [
ûi

ûi+1

]
= φ, 1 ≤ i ≤ m − 1, (79)

where q1 = [θ1 θ2 θ3 θ4]T and q2 = [δ1 δ2 δ3 δ4]T are the eigenvectors corresponding to the
first two smallest eigenvalues of the eigenvalue problem (78).

The global prolongation operator Q̃ is formed by assembling the prolongation matrices of
each aggregate, which yields:
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Table 1. Spectral radius of the RVE based aggregation method (ξ = �tcr/�t)

ρ(S3T S3) n = 40 n = 80 n = 120 n = 160 n = 200

E1/E2 = 1, ξ = 0 0·0242 0·0242 0·0243 0·0243 0·0243

E1/E2 = 10, ξ = 0 0·0450 0·0450 0·0450 0·0450 0·0450

E1/E2 = 100, ξ = 0 0·0116 0·0116 0·0116 0·0116 0·0116

E1/E2 = 1000, ξ = 0 0·0013 0·0013 0·0013 0·0013 0·0013

E1/E2 = 1, ξ = 0·5 1·36 × 10−5 1·36 × 10−5 1·36 × 10−5 1·36 × 10−5 1·36 × 10−5

E1/E2 = 10, ξ = 0·71 2·06 × 10−6 2·06 × 10−6 2·06 × 10−6 2·06 × 10−6 2·06 × 10−6

E1/E2 = 100, ξ = 0·16 0·0234 0·0234 0·0234 0·0234 0·0234

E1/E2 = 1000, ξ = 0·5 1·86 × 10−4 1·86 × 10−4 1·86 × 10−4 1·86 × 10−4 1·86 × 10−4

Q̃ =




q1 q2

q1 q2

. . . . . . . . . . . .

q1 q2




n×m

(80)

2.2.2. The spectral radius of the two-level iteration matrix
The coarse-model equivalent stiffness matrix is formed by restriction of the source grid matrix,

i.e., K0 = Q̃
T
KQ̃. We consider the two-level iteration process consisting of three SSOR

(Symmetric Successive Overrelaxation Method) pre- and post-smoothing iterations. The spec-
tral radius of the two-level iteration matrix ρ(S3T S3) is evaluated numerically and the results
are presented in Table 1.

It can be seen that the RVE based aggregation method has similar convergence charac-
teristics observed in the RVE based two-level method, i.e., the rate of convergence increases
with increasing material heterogeneity and decreasing time integration step. For both static
and dynamic cases, the rate of convergence is independent of the size of the problem.

3. Convergence for 2D model problem

We consider a 2D structured mesh and restrict our attention to the static case. The problem
configuration and the spatial discretization scheme are shown in Figure 9. The RVE consists
of 9 elements totaling 32 degrees of freedom as illustrated in Figure 9.

As in 1D case, the global prolongation operator Q̃ is a block diagonal matrix formed by
assembling the prolongation matrices of each aggregate:

Q̃ = diag {Q̃a, Q̃a, . . . , Q̃a}, (81)

where the prolongation matrix of the aggregate Q̃a is obtained from the solution of the
eigenvalue problem:

Kaφ = λaφ, (82)
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Figure 9. Aggregation model in 2D

Table 2. Spectral radius for a single multilevel cycle (2D 9-element
RVE), statics

ρ(S3T S3) n = 18 × 18 n = 22 × 22 n = 30 × 30

E1/E2 = 1 0·1157 0·1441 0·1820

E1/E2 = 10 0·0610 0·0628 0·0650

E1/E2 = 100 0·0260 0·0261 0·0262

E1/E2 = 1000 0·0037 0·0037 0·0037

with Ka being the stiffness matrix of the aggregate. Eigenvectors corresponding to the N inc ·
N rbd smallest eigenvalues of Ka are chosen for the construction of Q̃a, where N inc, N rbd are
the number of inclusions and rigid body modes per inclusion in the RVE. In the present case:
Ninc = 4, N rbd = 3.

As in 1D case, we consider a two-level iterative process consisting of three SSOR pre- and
post-smoothing iterations. The spectral radius of the two-level iteration matrix

ρ(S3T S3) is evaluated numerically and the results are given in Table 2.

4. Comparison of solvers and discussion

Numerical results of the RVE-based methods are compared to those of the classical conjugate
gradient and two-grid methods for 1D model problem defined in Figure 6. One end of the
problem domain in Figure 6 is fixed, while the other end is subjected to a load P . For the
statics, P = P0, where P0 = 50 KN . For dynamics, P = P0 sin(ωt), if 0 ≤ t ≤ π/ω and
P = 0, if t > π/ω, where the frequency of the excitation is ω = 3 × 104.
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Table 3. Number of iterations for the two-element RVE, statics (η = 10−8)

Source Mesh Size n = 402 n = 1002

E1/E2 1 10 100 1000 1 10 100 1000

RVE based MG 10 7 6 4 10 7 5 4

Classical MG 10 44 435 4344 10 44 436 4358

PCG 156 227 268 286 364 541 662 711

Table 4. Number of iterations for the two-element RVE, dynamics, n = 1002
(η = 10−8)

Solvers RVE based MG Classical MG PCG

E1/E2 = 1 �tcr/�t1 = 0·45 2 2 8

�tcr/�t3 = 0·90 1 1 4

E1/E2 = 10 �tcr/�t1 = 0·19 5 6 15

�tcr/�t2 = 0·39 3 3 9

�tcr/�t3 = 0·96 1 1 5

E1/E2 = 100 �tcr/�t1 = 0·06 4 60 21

�tcr/�t2 = 0·25 2 6 8

�tcr/�t3 = 0·97 1 1 4

E1/E2 = 1000 �tcr/�t1 = 0·02 4 702 22

�tcr/�t2 = 0·20 2 14 6

�tcr/�t3 = 0·98 1 1 3

For all multi-level solvers (MG), we take three SSOR pre- and post-smoothing itera-
tions. For the PCG (Preconditioned Conjugate Gradient) solver, the SSOR preconditioner
is employed. The stopping criterion is taken as

‖r‖2

‖f ‖2
≤ η = 10−8, (83)

where ‖ ‖2 is the 2-norm.
Results for the two-element RVE model are presented in Table 3 for statics and in Table 4

for dynamics. The corresponding results for the three-element RVE model are presented in
Table 5 and Table 6, respectively.

It can be observed that in statics, the rate of convergence for both the classical multigrid and
the PCG solvers deteriorates rapidly as the degree of material heterogeneity increases, while
the rate of convergence for the RVE based multigrid solver improves. The rate of convergence
for both the RVE and the classical multigrid solvers is independent of the mesh refinement.
However, the rate of convergence for the PCG solver deteriorates rapidly as the problem size
increases.

In dynamics, if the time step is close to critical, all solvers converge rapidly. This is due
to the fact that the equivalent stiffness matrix is dominated by the diagonal mass matrix.
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Table 5. Number of iterations for the 3-element RVE, statics (η = 10−8)

Source Mesh Size n = 1001 n = 2001

E1/E2 1 10 100 1000 1 10 100 1000

Aggregation 5 5 5 4 5 5 5 4

Classic MG 8 18 136 1271 8 18 139 1561

PCG 364 526 601 622 705 1030 1194 1250

Table 6. Number of iterations for the 3-element RVE, dynamics, n = 2001
(η = 10−8)

Solvers RVE based Classic MG PCG

Aggregation

E1/E2 = 1 �tcr/�t1 = 0·23 3 3 15

�tcr/�t2 = 0·45 2 2 8

�tcr/�t3 = 0·90 1 1 5

E1/E2 = 10 �tcr/�t1 = 0·08 4 8 27

�tcr/�t2 = 0·16 4 6 15

�tcr/�t3 = 0·82 1 2 4

E1/E2 = 100 �tcr/�t1 = 0·03 4 52 34

�tcr/�t2 = 0·26 4 6 6

�tcr/�t3 = 0·87 1 2 4

E1/E2 = 1000 �tcr/�t1 = 0·008 4 910 34

�tcr/�t2 = 0·08 4 42 8

�tcr/�t3 = 0·83 1 2 4

For larger time steps and in the case of high degree of material heterogeneity, the classical
multigrid solver might underperform PCG solver due to poor choice of the coarse grid space.
On the other hand, the RVE based solvers converge rapidly for all cases considered.

5. Summary and conclusions

A dedicated multilevel method for wave propagation problems in periodic heterogeneous
media is developed and validated. The intergrid transfer operators are constructed from the
solution of the Representative Volume Element (RVE) problem. The rate of convergence of
the RVE-based multilevel method has been shown to improve with increasing material het-
erogeneity or mismatch parameter between the stiffness of microconstituents and decreasing
time integration step. Numerical results confirm theoretical estimates.

The methodology developed will find its use in practical applications where the homoge-
nization theory in not applicable due to the fact that the size of the microstructure is compara-
ble in magnitude to that of structural details or the wavelength of a traveling signal. This class
of problems falls into the grey area where the structural and material systems cannot be sep-
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arated. Among the applications falling into this category are: woven architectures in aircraft
engines, airframes, tires, micro-electronic devices, and porous engineering materials such as
honeycombs and truss-like materials. Many of these applications are characterized by strong
mismatch of microconstituents stiffness resulting in rapid convergence of the RVE-based
multilevel process.
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